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STEADY-STATE HARMONIC ANTIPLANE VIBRATIONS OF A 

TWO-LAYER ELASTIC HALF-SPACE WITH A CYLINDRICAL CAVITY 

S. O. Vorob'eva, A. A. Lyapin, 
and M. G. Seleznev UDC 539.3 

!. Formulation of a Boundary-Value Problem on Antiplane Steady Harmonic Vibrations. 
Let an elastic medium in a rectangular Cartesian coordinate system (x, y, z) occupy the 
region x ~ -b, r = J(x - h) 2 + y2 ~ a. A layer of thickness b(-b < x < 0) with the para- 
meters p, ~ (9 is density and ~ is the shear modulus) is rigidly c~nne~ted with the half- 
space x ~ 0. The half-space is characterized by the parameters 91 and ~i and as a whole 
contains a horizontal cylindrical cavity of radius a with its center at the point [h, 0). 

Distributed shearing forces are assigned on the boundary of the region, these forces 
undergoing steady harmonic oscillations over time with the frequency ~: 

z = - -  b: ~ =  = Z (y) e - ~ t ,  r = a: ~ )  = 7  (~)  e ' ~ t .  ( 1 .  i )  

Forces of rigid adhesion are assigned on the interface between the layer and half- 
space (x = 0), these forces determining the equality of the displacements (w(x, y)) and the 
shearing stresses ~xz: 

w(x~ ~)lx~'o = w (n (z, Y)]x~+o, ( 1 . 2 )  

Here and below, the superscript (i) denotes characteristics of the half-space. The 
motion of the medium is described by the dynamical equations of the theory of elasticity 
in displacements - the Lame equations [I]. We will seek to solve the formulated boundary- 
value problem in the class of integrable functions~ 

We designate the contact stresses on the interface as follows 

x = 0: ~= (0,.y,: t) = R (y) o -~t = @) (o, y~ t). (1.3) 

In this case, we will use the method of Fourier transformation to solve the boundary-value 
problem for an elastic layer -b ! x ! 0 with boundary conditions (I.i), (1.3). Here, the 
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expression for the amplitude of the displacement of points of the layer is 

~(~, ~) = ~--~ (?(~) o~ ~ (7 -  D - ~ (~) o~ ~)/(~.~ ~ )  c ~  a~ (~.4) 

where R(~) = F[R(y)]; Z(~) F[Z(y)I; ~ = g~ -- 0~ O 3 = p~a~/~; y = y/a~ x = x/a, b = b/a are 
dimensionless para-meters. 

The contour F is chosen in acordance with the principle of limiting absorption and 
has the following form [2]: it bends the positive singularities of the integrand function 
downward and the negative singularities upward. It coincides with the real axis on the 
remaining part. 

The amplitude function of the field of displacements excited by the load (1.3) in an 
elastic half-space with a cavity is constructed by the superposition method: 

where 

~--7- ~xp ( .  ~,~ + ~ ( n -  ~)) ~n~=; 
r - - o =  

( i .s)  

(1.6) 

~ ~ )  (%0 e~m~ ~ )  (~, ~) -- ~ )  (r, ~) = ~ , ~=-~ . .~  ~ ,  m < ~ ( % )  
"-m--i "~1] Ol"m 

ms 

X ; T~ (~) 

arctg~ Y8 1; a ~= s= T. 

X 

Here and below, we use only dimensionless coordinates x, y, r = r/a. 
omitted. The stress functions Rl(y), TI(~) are determined from the system of integral 
equations [3]: 

,y 

t ~ SBi(~)K2(a.,~)e~.d~d~= T(~). 

Here 

Thus, the bar will be 

(1.7) 

eim(arctg(_ys)_~l) 
KI (Y,: ~) = ~=-| ~ : • 

x - ~ .~ ~ 0~--~ H~ (0,r0) + (0~r0) 
r 0 

Am (%)= H~i, (00 -- ~ H~' (%). 

The function R(y) in system (1.7) determines the distribution of contact stresses along the 
interface of the elastic parameters of the medium (x = 0). This function is unknown. To 
close the system, we use adhesion condition (1.2) and consider that the equality of the 
stresses (the second condition of (1.2)) is satisfied automatically by a boundary condition 
from auxiliary boundary-value problems (1.3). From the first condition of (1.2) we have 
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l (R (~l) ch crbo--shZcrb(TI))elC~(n-Y) d~ld~ + ~i ~ 
r --r --oo 

+ ~ ~ K~ (y, n) r~ (n) dn = o, 
~i01 

E3(y,~l)= ~ exp(~(--n+arctg(--Y~)))H~)@V") 
,~=_| %. (Oi) ' . 

dNda + (1.8) 

Thus, to determine the unknown stress functions El(y), Ti(r R(y), we obtained a 
system of three integral equations (1.7), (1.8). We can describe the wave field in the 
medium by solving these equations with Eqs. (1.4)-(1.6). 

2. Solution of the System of integral Equations. It follows from analysis of the 
elements of system (1.7), (1.8) that at g = a/h < 1 the operator of the system is fully 
continuous in the space of integrable functions. At g << I, similar to [3, 4], it will be 
compressive. This makes it possible, in constructing the solution of the system, to make 
effective use of the method of successive approximations, with asymptotic calculation 
of the integrals [5]. 

Let us examine the case of a cavity of relatively small radius in greater detail. We 
can subdivide the initial boundary-value problem (i.i), (1.2) into two parts without loss 
of generality. 

Problem i. The boundary of a two-layer half-space (x = -b) is free of stresses, 
while distributed forces Z(y) ~ 0, T(~) # 0 are assigned on the cavity (r = i). 

Problem 2. The boundary of a two-layer half-space (x = -b) is loaded, while the 
boundary of the cavity (r = i) is free of forces Z(y) ~ 0, t(r 5 0. 

Let us examine problem 1 for ~ << i. Analysis of the elements of system (1.7), (1.8) 
in a first approximation leads to the solution 

R~ (y) = 0 , r~ (9) = r (9) + 0 . 

To calculate the second approximation, we specify the boundary conditions. We put T(r = 
p = const. Considering that the Fourier transforms of the functions Z(y), R(y), Ri(y) 
rather than the functions themselves enter into the representation describing the wave 
field in the medium, we write the following in the second approximation 

o -  

7/~ (a) = F [B (y)] ---- O~H~i (0 0 D+ - -  + 0 ~ ,j 

( ~ 
r~(~)=p 1+ ~ ~ H~(0~)~ ~ ~Cos~ + 0  

(2.1) 

Proceeding in a similar manner for problem 2, in the first approximation we obtain 

B1 (Y) = 2"~ po sh ~ + ~i(~i ch a I 

In calculating the second approximation, we specify the boundary conditions on the plane 
boundary, having put 

{p~ y~[c,d]~ p=const~ 
z (y) = o~ y ~ It, all. 
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In this case, calculation of the integrals in the second approximation yields 

.B~ (~z) - '  o---$---. + 4 V 2 ~ o  ~ (d - -c)  pe-i=/4 

{ ( )/ } x ~r;(o0/(2ao(o~)) + J,~( 0 r,~ " N  . A,,(00 X 

xo- / (o:~+>+o(~) ,  

/ K  ~xp (, (o, ~o~ + o~ -~-,v4))/ao (o0x r~ (cp) = -  ~ -  

o(~ X cos qD.p (d - -  c) + ~ . 

X 
( 2 . 2 )  

If necessary, the construction of successive approximations can be continued until the 
required accuracy is achieved in the solution of the system for problems i and 2. 

3. Calculation of Wave Fields in a Medium. To calculate the wave field in an elastic 
layer (-b < x < 0), we have representation (1.4). Inserting the solution of the integral 
equations ~Eqs_ (2.1) and (2.2) for problems i and 2, respectively) into (1.4), we reduce 
the problem to the calculation of a simple integral. This calculation can be done directly 
on a computer. To calculate the wave field in an elastic half-space with a cavity, for problem 
i we obtain 

W(1){X iap !exp(--~l(x+~-l)--iav)D- (~) 
_ . - 1  (01 )  e l D +  

~,. r +)= p [~.,=~,:,(or ~- ~, -a'(or x , 

o i m~+gOl~--l--~/l+motl2 I / - ~  T' ] • ( ~.. - . . ( o , ~ : / ~ : j  + o (~). 
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Similarly, for problem 2 

w?)(~, y) = z - 1  o~ k--- V -  + 4 

" { X exp (~ (8-I01 + ;T~//--i) 8-1GI) p (d c) *]J0 (01)/(2"0(I) (01)) ..~ m=l~ J~(Ol) X 

xr~(V~ ~o_/(o;o+)),~} o ~ (~ + 

�9 _ _  I . ( 2 ( o : ) : , m  
1 /h~ '~  exp 0 o 1 : 1  ~ ; 4 )  ( d "  ~) ~ o. 1) x T~( ~' (,., ~) = _ I/ ~ + p ( ' o  (ol) 

m]/o v O ~' m ~ I ) i  r [~  ,,^~m~12 
^ ,- ~ ~ _ ( 1 ) - 7 ~  n .' , , ,~,'1/'~ c o s  (p ~'. 

m = l  m. ~, 1] 

Figure 1 shows the behavior of the amplitude-frequency characteristic of the point of 
the medium with the coordinates x = y = 5 (~ = 0, i, b = i) for problem 2 with the following 
ratios: ~Dl/91 = 1.32"105, ~/P = 2.5"i0~ -- dashed line, ~i/pi = 2.5~ , p/p = 1.32"105 - 
the dot-dash line. The solid and dotted lines show characteristics of the same point in 
the case of a region without a cavity and analogous parameters of the problem. The quali- 
tative difference between the graphs is due to the fact that for V s < Vsl (V s = ~p/B, Vsl = 
JPl/Dl), the excitation of steady harmonic oscillations causes the layer to act as a wave- 
guide along the boundaries of which propagate waves with a decreasing amplitude. These 
waves are due to the presence of real zeros with the function D +. This condition is not 
determining for problem i, since the oscillating cavity is mainly responsible for the forma- 
tion of the wave field. The amplitude-frequency relation of a point of the medical during 
loading on the surface of a cylindrical hole is shown in Fig. 2. The correspondence between 
the lines and the parameters of the problem is the same as in Fig. i~ 

Analysis of the behavior of the solution of problem 2 with respect to the angular 
coordinate with a fixed distance from the vibration source yielded the results shown in 
Fig. 3 in the form of the dependence of wl~ i on the angle ~ with 81 = i, RI = ~ + y2 = 
13, ~ = arctg x/y, E = 0.i, Pl = 9 = 2"103. The dashed line shows the dependence with 
DI = 3"108, ~ = 7.5"107, while the dot-dash line shows the dependence with DI = 7 .5"107 , ~ = 
3"108. The solid and dotted lines show the analogous characteristics for a two-layer half- 
space without a cavity. An additional oscillation caused by the presence of the reflecting 
boundaries of the cavity, half-space, and layer is seen in the region with a hole. 
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